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Shaker Test

Advantages:
Persistent excitation – large 

energy input and high signal-to-
noise ratio

Random excitation – can 
average out slight nonlinearities, 
such as those arising from 
opening and closing of cracks and 
loosening of bolted joints, that can 
exist in the structure and extract 
the linearized parameters

Disadvantages:
Inconvenient and expensive



Single-Impact Hammer Test

Advantages:
Convenient
Inexpensive
Portable

Disadvantages:
Low energy input
Low signal-to-noise ratio
No randomization of input –
not good for nonlinear 
systems



Development of a Random Impact Test 
Method and a Random Impact Device

Combine the advantages of the two excitation 
methods

Increased energy input to the structure
Randomized input – can average out slight nonlinearities 
that can exist in the structure and extract the linearized
parameters
Convenient, inexpensive, and portable

Additional advantages
A random impact device can be designed to excite very 
large structures 
It cab be used to concentrate the input power in a desired 
frequency range



Novel Stochastic Models of a Random
Impact Series

Random impact series (RIS) (Zhu, Zheng, and 
Wong, JVA, in press)
Random arrival times and pulse amplitudes, with the same 
deterministic pulse shape

Random impact series with a controlled 
spectrum (RISCS)
Controlled arrival times and random pulse amplitudes, with 
the same deterministic pulse shape



Previous Work on the Random Impact 
Test

Huo and Zhang, Int. J. of Analytical and Exp. Modal 
Analysis, 1988
Modeled the pulses as a half-sine wave, which is 
usually not the case in practice
Analysis essentially deterministic in nature

The number of pulses in a time duration was modeled as a 
constant
No stochastic averages were determined

The mean value of a sum involving products of pulse 
amplitudes were erroneously concluded to be zero



N - total number of force pulses 
y(·)   - shape function of all force pulses 

- arrival time of the i-th force pulse 
- amplitude of the i-th force pulse 
- duration of all force pulses

Mathematical model of an impact series
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The amplitude of the force spectrum for 
the impact series

0

5

1 0

1 5

2 0

 

( a )

 

 

|X
(jω

)| 
or

 E
(|X

(jω
)|)

 (N
s)

0

1 0

2 0

3 0

 

( b )

 

 

E(
|X

(jω
)|)

 (d
B)

20N =

i normally distributed
random variable around i
τ = 20N =

i iτ =

1iψ =

Dotted line

Solid line
i normally distributed

random variable
ψ =

1iψ =

Dotted line

Solid line
i normally distributed

random variable
ψ =

Deterministic arrive times with deterministic or random amplitudes

Random arrive times with deterministic or random amplitudes



N(T)  - total number of force pulses that has arrived  
within the time interval (0,T]

y(·)  - arbitrary deterministic shape function of all force pulses 
- random arrival time of the i-th force pulse 
- random amplitude of the i-th force pulse 
- duration of all force pulses

Time Function of the RIS*
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Challenge:  A finite time random process with stationary and non-stationary parts
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Probability Density Function (PDF) of 
the Poisson Process N(T)

n=N(T)    - number of arrived pulses

λ - constant arrival rate of the pulses
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PDF of the Identically, Uniformly 
Distributed Arrival Times
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PDF of the Identically, Normally Distributed 
Pulse Amplitudes
(Used in numerical simulations)
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Mean function of x(t)
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Autocorrelation Function of x(t)

x(t) is a wide-sense stationary random  
process in
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Average Power Densities of x(t)

[0, ]t T τ∈ + ∆

( ) 2
[0, ]

1( ) TX j
S

T
τ ω

ω
τ

+∆=
+ ∆

[ ] ( ) ( )

[ ]

1 0

2 2 2
1 12

1( ) cos( )

1 cos( )2

k
E S x v k x v dv k dk

T
TE TE

τ τ

τ
ω ω

τ
ωλ ψ λ ψ

ω

∆ ∆ −

−∆

⎡ ⎤= +⎢ ⎥⎣ ⎦+ ∆
−⎧ ⎫⎡ ⎤× +⎨ ⎬⎣ ⎦⎩ ⎭

∫ ∫

[ , ]t Tτ∈ ∆

Non-stationary at the beginning and 
the end of the process

Wide sense stationary

( ) 2
[ , ]

2 ( ) TX j
S

T
τ ω

ω
τ

∆=
− ∆

Comparison between x(t) in              and [0, ]T τ+ ∆ [ , ]Tτ∆

Average power densities

The expectations of average power densities 
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Averaged, Normalized Shape Function
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Comparison of Analytical and Numerical 

Results for Stochastic Averages

Mean function of x(t)
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Comparison of Analytical and Numerical 
Results for Stochastic Averages (Cont.)
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Increasing the Pulse Arrival Rate Increases the Energy Input
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A single degree of freedom system under 
single and random impact excitations

Sampling time

Excitation time

Ts=16 s

T=16 s  (Continuous)

T=11.39 s  (Burst)

Arrival times

it =Uniformly   distributed
random variables over T
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A single degree of freedom system under 
multiple impact excitations (cont.)

Noise
Impact force

Sampling time

Arrival times

Ts=16 s

it =0.2424i s 
(Deterministic)

it =Uniformly   distributed
random variables
(Random)

Excitation time
T=11.39 s  

Where i=1, 2,…, 66



Random Impact Series with a Controlled 
Spectrum (RISCS)

RISCS can concentrate the energy to a desired frequency 
range.  For example, if one wants to excite natural frequencies 
between 7-13 Hz.  The frequency of impacts can gradually 
increase from 7 Hz at t=0 s to 13 Hz at t=8 s.  
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Random Impact Series with a Controlled 
Spectrum (RISCS) (cont.)
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RISCS Can Concentrate 
the Input Energy in a 
Desired Frequency 
Range and the 
Randomness of the 
Amplitude Can Greatly 
Increase the Energy 
Levels of the Valleys in 
the Spectrum



Conclusions 

Novel stochastic models were developed to 
describe a random impact series in modal 
testing.  They can be used to develop random 
impact devices, and to improve the measured 
frequency response functions. 

The analytical solutions were validated 
numerically.

The random impact hammer test can yield 
more accurate test results for the damping 
ratios than the single impact hammer test.
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